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Abstract
An expansion for the free energy functional of the Sherrington–Kirkpatrick
(SK) model, around the replica symmetric (RS) SK solution Q

(RS)
ab = δab +

q(1 − δab) is investigated. In particular, when the expansion is truncated to
the fourth order in Qab − Q

(RS)
ab the full replica symmetry broken (FRSB)

solution is explicitly found but it turns out to exist only in the range of
temperature 0.549 . . . � T � Tc = 1, not including T = 0. On the other
hand, an expansion around the paramagnetic solution Q

(PM)
ab = δab, up to the

fourth order, yields a FRSB solution that exists in a limited temperature range
0.915 . . . � T � Tc = 1.

PACS numbers: 75.10.Nr, 64.70.Pf

1. Introduction

The Sherrington–Kirkpatrick (SK) model is defined by the Hamiltonian [1]

H = −1

2

1,N∑
i �=j

Jij σiσj , (1)

where the σi are ±1 Ising spins and the couplings Jij are independent Gaussian random
variables of zero mean and variance equal to 1/N .

The thermodynamic properties of the model are described by the free energy (density) f

averaged over the quenched disorder. To overcome the difficulties of averaging a logarithm,
the average over the disorder is computed using the so-called replica trick

− βNf = lim
n→0

Zn − 1

n
, (2)
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where β = 1/T is the inverse temperature and, as usual, (· · ·) denotes the average over the
disorder. For n integer Zn is the partition functions of n identical, non-interacting, replicas of
the system. The average over disorder couples the different replicas. Performing this average,
and introducing the auxiliary symmetric replica overlap matrix Qab = 1

N

∑
i σiaσib, with

a �= b, the disorder-averaged replicated partition functions can be written as [1]

Zn =
∫ ∏

a<b

√
Nβ2

2π
dQab eNL[Q] (3)

with the effective Lagrangian (density)

L[Q] = −β2

4

∑
ab

Q2
ab + �[Q] − n

β2

4
(4)

�[Q] = ln Trσa
exp

(
β2

2

∑
ab

Qab σaσb

)
. (5)

The last term in (4) follows from the definition Qaa = 1. The normalization factor in (3) gives
a sub-leading contributions for N → ∞ and is omitted in the following.

In the thermodynamic limit, N → ∞, the value of the integral in (3) is given by the
stationary point value, and the replica-free energy density reads

− nβ f = L[Q] (6)

with Qab evaluated from the stationary condition

∂

∂ Qab

L[Q] = 0, a < b (7)

that is from the self-consistent equation

Qab =
Trσ σaσb exp

(
β2

2

∑
ab Qabσaσb

)
Trσ exp

(
β2

2

∑
ab Qab σaσb

) = 〈σaσb〉, a �= b. (8)

To solve the self-consistent stationary point equation, we have to specify the structure of the
matrix Qab. This is not straightforward since the symmetry of the replicated partition function
under replica permutation is broken in the low temperature phase. The replica symmetric
(RS) Ansatz Qab = δab + q (1 − δab) of Sherrington and Kirkpatrick [1], that assumes the
same overlap for any pair of replicas, indeed yields an unphysical negative entropy at zero
temperature. Following the parameterization introduced by Parisi [2, 3], the overlap matrix
Qab for R breaking in the replica permutation symmetry is divided into successive boxes of
decreasing size pr, with p0 = n and pR+1 = 1, along the diagonal, and the elements Qab of the
overlap matrix are assigned so that

Qab ≡ qa∩ b=r = Qr, r = 0, . . . , R + 1, (9)

with 1 = QR+1 � QR � · · · � Q1 > Q0. The notation a ∩ b = r means that a and b
belong to the same box of size pr but to two distinct boxes of size pr+1 < pr . The case R = 0
gives back the RS solution, while the opposite limit R → ∞ describes a state with an infinite,
continuum, number of possible spontaneous breaking of the replica permutation symmetry.
It turns out that a physical solution is obtained only in the latter case. Using this structure
for Qab, Parisi and others [2–4] have shown how to obtain solutions with R steps of replica
symmetry breaking (RSB) and in particular with R → ∞ (FRSB), and how to construct
equations satisfied by Q(x), the continuous limit of the order parameter Qab for R → ∞ [5].
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These equations can be solved in the full low temperature phase [6–11]. However, working
directly with Q(x) makes it difficult to keep track, for instance, of the Hessian, and hence of
the stability of the solution, since the matrix structure of the overlap matrix Qab is lost in the
continuous limit3. The study of the Hessian of the fluctuations around the RSB solution with
an arbitrary R from the Lagrangian (4)–(5) is a very hard task. As a result, stability analysis
has mostly been investigated near the critical temperature and with the help of a simplified
model [12, 13], the so-called Truncated Model [2, 14], that similarly to the Landau Lagrangian
retains only the main mathematical structure of the expansion of the replicated free energy in
powers of Qab near Tc, where |Qab| 	 1.

In the present work, we take a different viewpoint and consider the expansion of the
Lagrangian (4)–(5) around the replica symmetric Ansatz of Sherrington and Kirkpatrick.
The main motivation for such an expansion is to obtain a simpler Lagrangian which, while
retaining the replica symmetry breaking properties of the original model, is a priori valid
in the whole low temperature phase. Anticipating our conclusions, we find that the model
obtained by truncating the expansion to the fourth order, the minimum order required to have
a FRSB solution, while improving the results obtained from the expansions near Tc is valid in
a temperature range which does not reach zero temperature.

The outline of the paper is as follows: in section 2, we construct the approximation of
�[Q] obtained expanding it around the replica symmetric SK solution Q

(RS)
ab = q (a �= b) up

to the fourth order in Qab − q. The stationarity equation and its solutions are discussed in
section 3. The truncated model was obtained considering the main features of the mathematical
structure of the expansion of �[Q] around the paramagnetic solution Q

(PM)
ab = 0 (a �= b) to the

fourth order in Qab. The parameters entering in the model are, however, usually arbitrary and
so it is difficult to make contact with the original SK model. By using the results of section 2
we can determine the coefficients of the expansion and study the properties of the solution.
This is done in section 4. Discussion and conclusions are deferred to section 5.

2. Expansion of the free energy functional around the SK solution

To expand the functional �[Q] around the SK solution Qab = q for a �= b, we consider an
overlap matrix Qab of the form

Qab = δab + q (1 − δab) + qab, (10)

where q is given by the SK replica symmetric solution (see below) and qab the deviation from
the replica symmetric solution. Inserting this form of Qab into the free energy functional (6)
yields

− nβf = n
β2

4
q2 − n

β2

2
q − β2

2
q

∑
ab

qab − β2

4

∑
ab

q2
ab

+ ln Trσ exp

⎡⎣β2

2
q

(∑
ab

σa

)2

+
β2

2

1,n∑
ab

qab σaσb

⎤⎦ + O(n2). (11)

Setting qab = 0, the above expression leads to the Sherrington–Kirkpatrick free energy

− βfSK = β2

4
q2 − β2

2
q + ln cosh(βz) + ln 2 + O(n), (12)

3 Paradoxically, it is this continuous limit R → ∞ that imposes the existence of zero modes (at the bottom of
the replicon bands). Indeed, this limit is necessary to transform the replica permutation invariance into a (broken)
continuous group thus generating Goldstone zero modes.
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where the overbar denotes the average over the Gaussian variable z:

g(z) =
∫ +∞

−∞

dz√
2πq

e−z2/2q g(z). (13)

Stationarity of f SK with respect to q leads to SK replica symmetric solution

q = θ2, θ ≡ tanh(βz). (14)

For qab �= 0, the free energy functional f can be written, expanding the last term in (11)
in powers of qab, as

− nβf = −nβfSK − β2

2
q

∑
ab

qab − β2

4

∑
ab

q2
ab

+
∑
k�1

1

k!

(
β2

2

)k
〈(∑

ab

qab σaσb

)k〉
c

, (15)

where the subscript ‘c’ indicates that only connected contributions, i.e. only those terms that
cannot be written as the product of two or more independent sums, must be considered. The
angular brackets denote the average

〈g(σ)〉 =
n∏

a=1

eβzσag(σ) + O(n). (16)

Since σ 2
a = 1, the last term in (15) contains only averages of products of spins with different

replica index. These are easily evaluated yielding

〈σa1 · · · σah
〉 =

n∏
a=1

eβzσa

h∏
l=1

σl

= [2 cosh(βz)]n−h [2 sinh(βz)]h + O(n)

= θh + O(n), a1 �= · · · �= ah. (17)

Form the study of the truncated model it is known that terms of order O
(
q4

ab

)
must be included

into the free energy to break the replica symmetry. Thus in the following we shall consider
the first four terms of the expansion.

2.1. Term O(qab)

The term of order O
(
qab

)
is〈 ∑

ab

qab σaσb

〉
=

∑
ab

qab〈σaσb〉 = θ2
∑
ab

qab. (18)

The choice q = θ2, see (14), cancels the linear term in the expansion (15) and removes the
tadpoles.

2.2. Terms O
(
q2

ab

)
The term of order O

(
q2

ab

)
reads〈( ∑

ab

qab σaσb

)2〉
=

∑
ab
cd

qab qcd 〈σaσbσcσd〉. (19)

4
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To evaluate this term we have to find all different possible ways of equating the ab indexes to
cd indexes with the constraint, imposed by qaa = 0, that a �= b and c �= d. There are three
possible cases: all indexes different, a pair of equal indexes and two pairs of equal indexes.
By noticing that the spin product averages depend only on the number of different indexes,
and not on the value of the indexes, and that the matrix qab is symmetric, these yield〈( ∑

ab

qab σaσb

)2〉
= θ4

∑
abcd

′
qab qcd + 4 θ2

∑
abc

′
qac qcb + 2

∑
ab

′
q2

ab, (20)

since there are four possible ways of equating one index in ab with one index in cd and two
was of equating the pair of indexes ab to the pair cd. All sums are restricted to different
indexes, this is denoted by the prime ‘′’ over the sum sign. Transforming the restricted sums
into unrestricted ones, i.e. sums over free index, one finally ends up with〈( ∑

ab

qab σaσb

)2〉
= θ4

∑
abcd

qab qcd + 4 θ2(1 − θ2)
∑
abc

qac qcb + 2 (1 − θ2)2
∑
ab

q2
ab.

(21)

This equation has a simple diagrammatic expression. Indeed denoting qab by a line and the
vertex where two (or more) indexes are equal by a ‘dot’, the above equation can be written as

ab

qab σaσb

2

= θ4 + 4 θ2(1 − θ2)

+ 2 (1 − θ2)2 (22)

More details can be found in appendix B. From this form we can easily see that the first term
is a disconnected contribution and hence it does not appear in the free energy (15); therefore,
to order O

(
q2

ab

)
the free energy reads

− nβf = −nβfSK +
β4

4
M

∑
abc

qacqcb +
β4

4
N

∑
ab

q2
ab + O

(
n2, q3

ab

)
, (23)

where

M = 2 θ2(1 − θ2), N = (1 − θ2)2 − T 2. (24)

Note that the coefficient N is (minus) the replicon eigenvalue of the replica symmetric solution
[15]. The qab = 0 solution is hence unstable below T = 1.

2.3. Terms O(q3
ab) and O(q4

ab)

These are evaluated as done for the O
(
q2

ab

)
by computing all connected contributions that

follows from the expansion of the k = 3 and k = 4 terms in (15). By using a self-explanatory
diagrammatic representation these are given by

ab

qab σaσb

3

c

= P + Q + R + J + K (25)

where

P = 24 θ2(1 − θ2)2, Q = −16 θ4(1 − θ2), R = −48 θ2(1 − θ2)2, (26)

J = 16 θ2(1 − θ2)2, K = 8 (1 − θ2)3 (27)

5
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and

ab

qab σaσb

4

c

= −A + B −B

+ C − C + 4D

− 3D + E − 2E

+ F + G −H
(28)

with

A = 32 θ4(1 − 3θ2)(1 − θ2), B = 384 θ4(1 − θ2)2, C = 384 θ2(1 − θ2)3, (29)

D = 64 θ2(1 − 3θ2)(1 − θ2)2, E = 192 θ2(1 − θ2)2, F = 48 (1 − θ2)4, (30)

G = 32 (1 − 3θ2)2(1 − θ2)2, H = 96 (1 − 3θ2)(1 − θ2)3. (31)

Collecting all contributions up to order O
(
q4

ab

)
, the replica free energy functional reads

− nβf = −nβfSK +
1

4T 4

[
M

∑
abc

qacqcb + N
∑
ab

q2
ab

]
+

1

6(2T 2)3

[
P

∑
abcd

qacqcdqdb

+ Q
∑
abcd

qadqbdqcd + R
∑
abc

q2
acqcb + J

∑
ab

q3
ab + K

∑
abc

qacqcbqba

]

+
1

24(2T 2)4

[
−A

∑
abcde

qaeqbeqceqde + B
∑
abcd

qacq
2
cdqdb

− B
∑
abcde

qacqdcqceqeb + C
∑
abc

qacq
2
cbqba − C

∑
abcd

qacqadqdcqcb

+ 4D
∑
abc

q3
acqcb − 3D

∑
abcd

q2
abqbcqbd + E

∑
abcde

qabqbcqcdqde

− 2E
∑
abcd

qabqbcq
2
cd + F

∑
abcd

qabqbcqcdqda + G
∑
ab

q4
ab − H

∑
abc

q2
acq

2
cb

]
+ O

(
n2, q5

ab

)
. (32)

3. Stationarity equation

The equation for qab follows from the stationarity condition (∂/∂qab)f = 0 applied to the
replica free energy functional (32). In the limit R → ∞ this yields

1

2T 4
[MS1 + Nq(x)] +

1

6(2T 2)3

[
3(P + Q)S2

1 + R(S2 + 2S1q(x)) + 3Jq(x)2

+ 6K

(∫ x

0
dy q̇(y) q̂(y) + S1q(0)

)]
+

1

24(2T 2)4

[
−4AS3

1

+ B
(
2S1S2 − 4S3

1 + 2S2
1q(x)

)
+ C 	(x)

6
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+ D
(
4S3 − 6S1s2 + 12S1q(x)2 − 6S2

1q(x)
)

+ E
(
4S3

1 − 4S1S2 − 4S2
1q(x)

)
+ 12F

(∫ x

0
dy q̇(y) q̂(y)2 + S2

1q(0)

)
+ 4Gq(x)3 − 4HS2 q(x)

]
= 0, 0 � x � xc, (33)

where

	(x) = 2

[∫ x

0
dy

(
d

dy
q(y)2 q̂(y) + q̂2(y) q̇(y)

)
+ S1 q(0)2 + S2 q(0)

]
+ (4q(x) − 6S1)

[∫ x

0
dy q̇(y) q̂(y) + S1 q(0)

]
− 3

∫ x

0
dy q(y) q̂(y)2 − 3S2

1 q(0) + q(x)3 (34)

and

Sn = −
∫ 1

0
dx q(x)n = −

∫ xc

0
dx q(x)n − (1 − xc) q(xc)

n. (35)

The ‘dot’ indicates the derivative, q̇(x) = (d/dx)q(x), while the ‘hat’ the replica Fourier
transform (RFT), that for R → ∞ reads [17]4

q̂(x) =
∫ xc

x

dy y
d

dy
q(y) − q(xc), RFT (36)

q(x) = −
∫ x

0
dy

1

y

d

dy
q̂(y) + q(0), inverse RFT, (37)

where q(0) = q(x = 0), and we have neglected the surface term at x = 1 since
q(x = 1) = qaa = 0.

3.1. Solution of the stationarity equation

The complicate integro-differential stationarity equation (33) can be solved reducing it to an
ordinary differential equation using the differential operator Ô = (1/q̇(x))(d/dx) to eliminate
integrals. Application of Ô to (33) leads to

N

2T 2
+

1

3(2T 2)3
[RS1 + 3Jq(x) + 3Kq̂(x)] +

1

12(2T 2)4

[
BS2

1

+ C

(
2
∫ x

0
dy q̇(y) q̂(y) + q̂2(x) + 4q(x)̂q(x) − 3S1 q̂(x)

+ 2S1 q(0)

)
+ D

(
12S1q(x) − 3S2

1

) − 2ES2
1 + 6F q̂(x)2

+ 6Gq(x)2 − 2HS2

]
= 0. (38)

The equation is not yet simple enough to be solved. A second application of Ô, and a
rearrangement of terms, yields

8T 2X(x) + Y (x)̂q(x) + U(x)q(x) + Z(x)S1 = 0, (39)

4 The RFT was first introduced, directly in the continuum limit (R → ∞) by Mezard and Parisi [18].
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where

X(x) = J − Kx, Y (x) = 2C − 4Fx, U(x) = 4G − 2Cx, Z(x) = 4D + Cx. (40)

The integral equation (39) can now be transformed into a differential equation dividing it
by Y (x) and taking the derivative with respect to x. This leads to the first order differential
equation

Y (x) [U(x) − Y (x) x] q̇(x) + μq(x) + 8T 2λ + νS1 = 0, (41)

with coefficients

λ = ẊY − XẎ = −2CK + 4FJ (42)

μ = U̇Y − UẎ = −4C2 + 16FG (43)

ν = ŻY − ZẎ = 2C2 + 16DF. (44)

The solution of equation (41) reads

q(x) = �
x − s√

(x − s)2 + 	
− a − bS1, 0 � x � xc, (45)

where

a = 8T 2 λ

μ
b = ν

μ
s = C

2F
	 = G

F
− s2, (46)

and we have absorbed a factor μ into the definition of the integration constant �. The quantity
S1 is a function of � and xc (and temperature), see (35). Introducing the auxiliary function

h(z) =
∫ z

0
dx

x − s√
(x − s)2 + 	

+ (1 − z)
z − s√

(z − s)2 + 	

= (z − s)(1 − s) + 	√
(z − s)2 + 	

−
√

s2 + 	, (47)

this reads

S1 = � h(xc) − a

b − 1
. (48)

The value of �, and xc, is determined from equations (38) and (39). Replacing in
equation (39) q(x) with the expression (45) yields a linear equation for �. This can be readily
solved noticing that since � does not depend on x we can just set x = 0 and use the identity
q̂(0) = S1. This leads to

� = �0

�1 + �2 h(xc)
, (49)

where

�0 = 4T 2J (b − 1) + a (2G − C − 2D),

�1 = 2G(b − 1)
s√

s2 + 	
, (50)

�2 = 2Gb − C − 2D.

Finally the value of xc, for a given temperature T, is determined from (38). Again we can
take advantage of the fact that xc does not depend on x and choose in (38) a suitable value for
x, e.g. x = xc or x = 0. Setting x = 0 into (38) a straightforward algebra leads to the equation

2N +
1

6T 2
[3Jq(0) + (R + 3K)S1] +

1

48T 4

[
6Gq(0)2 + (6C + 12D)S1q(0)

+ (B − 3C − 3D − 3E + 6F)S2
1 + (C − 2H)S2

] = 0, (51)

8
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0 0.2 0.4 0.6 0.8 1
x

0

0.04

0.08

0.12

Q(x)

Figure 1. Q(x) versus x at temperature T = 0.9. The horizontal dashed line shows the SK
solution Q(x) = q. For this temperature, we have xc = 0.168 846 . . ., Q(xc) = 0.109 238 . . .

Q(0) = 0.013 570 . . . and q = 0.102 701 . . ..

where

S2 = −�2

[
−(1 − xc)

	

(xc − s)2 + 	
+ I2(xc) − I2(0) + 1 − b(b − 2)

(b − 1)2
h(xc)

2

]
+ 2

a

(b − 1)2
�h(xc) −

(
a

b − 1

)2

(52)

and

I2(x) = −
∫

dx
	

(x − s)2 + 	
= −

√
	 tan−1

(
x − s√

	

)
, 	 > 0. (53)

Solving equation (51) for xc at fixed T yields the value of xc(T ) that substituted back
gives the solution q(x) as a function of temperature. In figures 1 and 2 we show the solutions
Q(x) = q + q(x) for two different temperatures.

From the figures one clearly sees that Q(x = 0) �= 0. It grows as the temperature decreases
and overcomes q for T < 0.618 . . ., see also figure 3. Retaining in the expansion of �[Q]
only terms up to order O

(
q4

ab

)
breaks the replica symmetry; however, this approximation is not

good enough to change the SK result Q(x = 0) = q �= 0 to the expected one Q(x = 0) = 0.5

To recover the latter one has to add more terms in the expansion, probably all terms.
Below temperature T = 0.549 . . . equation (38) ceases to have a physical solution and

only the SK solution Q(x) = q survives. In figure 3 we show the values of Q(0), Q(xc) and
xc as function of temperature.

3.2. Solution near Tc = 1

Near the critical temperature Tc = 1, where both q and qab vanish, the solution of equation (38)
can be found as a series expansion in the (small) parameter τ = Tc − T . For example to
O(τ 5), we have

xc = 2τ − 4τ 2 + 40
3 τ 3 − 665

9 τ 4 + 68 567
135 τ 5 + O(τ 6) (54)

5 Q(x = 0) must vanish in the absence of external fields that break the up/down symmetry. For instance in the q � 4
Potts model the symmetry is broken and indeed Q(0) �= 0.

9



J. Phys. A: Math. Theor. 43 (2010) 055002 A Crisanti and C D Dominicis
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x
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0.3

0.4

0.5

Q(x)

Figure 2. Q(x) versus x at temperature T = 0.7. The full line is the result from the expansion
around T = 1 to order O(τ 13), while the circle is obtained from the numerical solution of
equation (38). The horizontal dashed line shows the SK solution Q(x) = q. For this temperature
we have xc = 0.3920(6), Q(xc) = 0.3879(1) . . . Q(0) = 0.2232(5) . . . and q = 0.3166(5) . . ..

0 0.2 0.4 0.6 0.8 1
T

0

0.2

0.4

0.6

0.8

1

Q(0)
Q(x

c
)

x
c

q

Figure 3. Q(0), Q(xc) and xc as function of temperature. The full line is the SK results in q = θ2.
The replica symmetry broken solution ends at temperature T = 0.549 . . ..

Q(0) = q + q(0) = 56
3 τ 3 − 220

3 τ 4 + 3968
9 τ 5 + O(τ 6) (55)

Q(xc) = q + q(xc) = τ + τ 2 − τ 3 + 5
2τ 4 − 413

90 τ 5 + O(τ 6). (56)

The resulting series are not convergent, but can be handled by using the Padé approximants.
We note that the series expansion of xc has the form of a Stieltjes series

∑
an(−τ)n. For these

series it is known that the diagonal Padé approximant P N
N (τ) gives an upper bound and the

10
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approximant P N
N+1(τ ) a lower bound of the sum [20]. Moreover in the limit of large N both

approximants converge, and if they converge to the same limit this is the value of the sum. By
using the Padé approximants we were able to use the series expansion almost everywhere in
the low temperature phase, where the replica symmetry broken solution exists. For example
for temperature T = 0.7 by using the series expansion to O(τ 13), we have xc = 0.3920(6), the
error being estimated from the difference between the Padé approximants P N

N and P N
N+1. A

comparison between the numerical and the power series solutions is shown in figure 2; there
is a rather good agreement.

4. Expansion around the paramagnetic solution

At the critical point Tc = 1, the order parameter function Q(x) vanishes, and one can then
think of expanding the functional �[Q] around Qab = 0, i.e. the paramagnetic solution.
Such an expansion, first considered by Bray and Moore [14], is at the basis of the so-called
Truncated Model [2] largely used to study the properties of the solution Q(x) near the critical
point. See [19] for an extension to more general models. Despite it usefulness, the Truncated
Model is a poor approximation for the SK model. Indeed, in the same spirit of the Landau
theory of second order transition, it retains only the main mathematical structure of the order
O

(
Q4

ab

)
expansion of �[Q] around Qab = 0, but with arbitrary coefficients. Using the results

of section 2, we can investigate the properties of the O
(
Q4

ab

)
approximation of the SK model.

The expansion of the replica free energy functional around Qab = 0 is obtained by setting
q = θ = 0 in (32). This yields

− nβf = n ln 2 +
1

4T 4
N

∑
ab

q2
ab +

1

6(2T 2)3
+ K

∑
abc

qacqcbqba

+
1

24(2T 2)4

[
F

∑
abcd

qabqbcqcdqda + G
∑
ab

q4
ab − H

∑
abc

q2
acq

2
cb

]
, (57)

with

N = 1 − T 2, K = 8, F = 48, G = 32, H = 96. (58)

Stationarity of (57) with respect to variations of qab leads to the stationary point equation,
that for R → ∞ reads

2Nq(x) +
K

4T 2

(∫ x

0
dy q̇(y) q̂(y) + S1 q(0)

)
+

1

24T 4

[
3F

(∫ x

0
dy q̇(y) q̂(y)2 + S2

1q(0)

)
+ Gq(x)3 − HS2q(x)

]
= 0. (59)

Applying the differential operator Ô = (1/q̇(x))(d/dx), as done in section 3.1, reduces the
above equation to

2N +
K

2T 2
q̂(x) +

1

24T 4
[3F q̂(x)2 + 3Gq(x)2 − HS2] = 0. (60)

This equation is not yet simple enough to be solved. A second application of Ô leads to

− 2T 2Kx − Fxq̂(x) + Gq(x) = 0. (61)

Dividing this equation by Fx and taking the derivative with respect to x transform the integral
equation (61) into a differential equation which, when solved, yields

q(x) = �
x√

x2 + G/F
, 0 � x � xc, (62)

11
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with

� = 2T 2 K

F

√
x2

c + G/F

xc + G/F
(63)

determined inserting the form (62) of q(x) into (61).
The endpoint xc is not a free parameter and must be determined as a function of temperature

from (60). Inserting q(x) from (62) and

q̂(x) = G

F

q(x)

x
− 2T 2 K

F
(64)

into (60), one ends up with the following equation:

2N − K2

2F
+

K2

6F

x2
c + G/F

(xc + G/F)2

[
3G + H

(
1 −

√
G

F
tan−1

(√
F

G
xc

)
− G

F

1 − xc

x2
c + G/F

)]
= 0

(65)

that solved for xc gives the value of xc(T ).
At the critical temperature T = Tc = 1, where N = 0, xc vanishes and increases as the

temperature is decreased below Tc. Introducing the small parameter τ = 1 − T , the solution
of equation (65) can be expressed as a power series. For example to the order O(τ 5) we have

xc = 2τ + 12τ 2 + 280
3 τ 3 + 2437

3 τ 4 + 37 641
5 τ 5 + O(τ 6) (66)

Q(xc) = τ + τ 2 + 44
3 τ 3 + 701

6 τ 4 + 30 763
30 τ 5 + O(τ 6) (67)

and

� = 1√
6

− 5√
6
τ + 1√

6
τ 2 − 23√

6
τ 3 − 51

√
3
2τ 4 − 2972

5

√
2
3τ 5 + O(τ 6). (68)

Note that in this case Q(x = 0) = 0.
The maximum allowed value of xc is 1. Setting xc = 1 into (65), and replacing the

constants by their values (58), we find that the replica symmetry broken solution (62) becomes
non-physical below the temperature

TFRSB = 1
3

√
2
5

[
21 −

√
6 tan−1

(√
3
2

)] = 0.9148 . . . , (69)

where xc > 1. At this temperature Q(xc) reaches its maximum value

lim
T →TFRSB

Q(xc) = 2
225

[
21 −

√
6 tan−1

(√
3
2

)] = 0.16737 . . . . (70)

We conclude this section noticing that for temperatures above, but close to, TFRSB equation (65)
can be solved as power series of 1 − xc. We do not report the expansion here.

5. Discussion and conclusions

In this work, we have derived the expansion of the Sherrington–Kirkpatrick model replica
free energy functional around the replica symmetric (RS) solution Q

(RS)
ab = δab + q(1 − δab).

We have considered in detail the approximation obtained by truncating the expansion to the
fourth order in Qab − Q

(RS)
ab , i.e. the lowest nontrivial approximation to have a continuous

replica symmetry breaking. The stationarity equation (33) associated with the approximate
free energy functional (32) can be solved and the explicit form of the full replica symmetry
broken (FRSB) solution Q(x), for 0 � x � xc, can be determined. The FRSB solution
appears at the critical temperature Tc = 1, as the RS solution, and exists only down to the
finite temperature T = 0.549 . . .. Below this, only the RS solution survives.

12
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A peculiar feature of the FRSB solution is that Q(x = 0) �= 0, and vanishes as (Tc − T )3

as the temperature T approaches the critical temperature Tc = 1. This property can be
traced back to the fact that the FRSB solution ‘opens’ around the RS solution Q(RS)(x), i.e.,
Q(x = 0) < q < Q(xc), as the temperature decreases below the critical temperature Tc. As
the temperature is decreased below Tc the RS solution q increases and drags Q(x = 0) to finite
values. We note that at T = 0.618 . . . the value of Q(x = 0) eventually overcomes that of q.

Setting q = 0 one recovers the expansion of the replica free energy functional around the
paramagnetic solution Q

(PM)
ab = δab to order O

(
Q4

ab

)
. This turns out to be rather interesting

because such an expansion is at the basis of the truncated model used to study the properties of
the FRSB solution Q(x) near the transition. To our knowledge, a study of this approximation
with the correct coefficients of the expansion was never done. Indeed the truncated model, and
the one in which one keeps all terms generated by the expansion of �[Q] to order O

(
Q4

ab

)
, has

been studied with the arbitrary coefficient. As a consequence of this the existence of a FRSB
solution was always taken for granted, but never verified. We have studied the existence of
the FRSB solution for this expansion in the last part of this work. Surprisingly it turns out that
the FRSB solution exists only close to the critical temperature, in the range of temperature
0.9148 . . . � T � 1. Therefore such expansions truncated to the fourth order cannot be used
to study the solution of the SK model near zero temperature.

To summarize,

• the expansion (to the fourth order) around the (replica symmetric) SK solution Q
(RS)
ab =

δab + q(1 − δab) yields, in the limit R → ∞, a Q(x) that does not vanish for x
null, in contrast with the exact Parisi solution. The solution exists only in the range
0.549 . . . � T � Tc = 1.

• the expansion (to the fourth order) around the paramagnetic solution q = 0 yields a Q(x)

that does vanish for x null. But it exists only close to Tc = 1, 0.915 . . . � T � Tc = 1.

In this work we have studied the existence of FRSB solutions. Finite RSB solutions
may also exist. These, however, may exhibit problems similar to those found for the FRSB
solution. For example, inserting the replica symmetric Ansatz qab = q (1 − δab) into the free
energy functional (57), and taking the limit n → 0, or expanding the SK free energy (12)
around q = 0 to the fourth order in q, one ends up with

− βf = ln 2 − 1 − T 2

4T 4
q2 +

1

3T 6
q3 − 17

24T 8
q4. (71)

Stationarity with respect to variations of q yields the paramagnetic solution q = 0 and the RS
solution

q = T 2

17
[3 −

√
3(17T 2 − 14)]. (72)

The latter correctly vanishes at the critical point T = Tc = 1, but exists only down to
temperature T = √

14/17 � 0.907 . . ., slightly below the lower end T = 0.915 . . . of the
FRSB solutions, where the quantity under the square root becomes negative.

The situation is only slightly better considering the expansion around the replica symmetric
SK solution since now the RS solution exists down to T = 0. The RS Ansatz qab = δq (1−δab)

yields indeed, besides the trivial solution δq = 0, a δq �= 0 solution leading to the unphysical
result Q = q + δq � − 31

3 (1 − T )3 as T ∼ 1−. The reason is that the expansion around the
SK solution includes the contribution of more diagrams: all diagrams that are needed to build
the SK free energy. In this sense this expansion is a better approximation for the SK model,
as also reflected by the larger temperature range where the FRSB solution exist.

The improvement is only apparent since for both expansions the RS solution, as well as
the paramagnetic solution for T < 1, has a negative replicon mass and is, hence, unstable.

13
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For what concerns the FRSB solution, whether in the full expansion (57) or in the truncated
model, they both have the same stability properties in the most dangerous sector, i.e. in the
replicon subspace (by virtue of the Ward–Takahashi identities [16]). Thus the FRSB, where it
does exist, is marginally stable with null replicon masses. We believe that this feature remains
true for the expansion around the SK solution as well.

Despite this, the limited range of temperature (and not including T = 0) in which these
expansions to the fourth order exist, makes them of little help to study the properties of the SK
model near zero temperature. To extend the range of validity one should retain more terms
in the expansion, and probably all terms (or infinite subseries thereof) since the particular
structures of the expansion (in powers of β) may otherwise lead to difficulties for very low
temperatures. We observe that to overcome this problem a construction, based upon an
expansion around a spherical approximation, which leads instead to an expansion in T, has
been recently proposed [21].
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Appendix A. The truncated model

The truncated model is defined by the free energy

− nf = τ

2

∑
ab

q2
ab +

w

6

∑
abc

qacqcbqba +
u

12

∑
ab

q4
ab, (A.1)

with τ = 1 − T and w and u arbitrary and positive. Comparison of (A.1) and (57) shows that

τ = N

2T 3
, w = K

8T 5
, u = G

32T 7
, (A.2)

while F = H = 0. We can then read the equation for q(x) directly from section 4. Setting
F = 0 in (61) one readily obtains the known linear form of q(x) for the truncated model

q(x) = 2T 2 K

G
x = w

2u
x, 0 � xc � xc. (A.3)

Finally setting F = H = 0 in (60), and using the above linear form of q(x), yields

2N − K2

G
xc +

K2

2G
x2

c = 0 (A.4)

that gives xc as a function of temperature. The value of xc is zero for T = 1 and increases as
T decreases below 1. By setting xc = 1 into (A.4) leads to the critical temperature

Ttrm =
√

1 − K2

4G
(A.5)

below which the replica symmetry broken solution ceases to exist. If 1 − K2/4G < 0
the solution exists down to T = 0. If we use the values K = 8 and G = 32 we have
Ttrm = 1/

√
2 = 0.707 . . ..

We note that due to the presence of T-factors in the relation between (N,K,G) and
(τ, w, u), the critical temperature has a slightly different form if expressed in the latter:

Ttrm = 1 − w2

4u
(A.6)

and is valid if w and u are temperature independent.
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Appendix B. Terms O(q2
ab): details

The terms of order O
(
q2

ab

)
are given by〈(∑

ab

qab σaσb

)2〉
=

∑
ab

cd

qab qcd 〈σaσbσcσd〉. (B.1)

To evaluate this term we have to find all possible ways of equating the ab indexes to cd

indexes, with the constraint a �= b and c �= d since qaa = 0. In the following to denote that a
group of indexes must be all different we shall write them in parenthesis; hence, in the present
case we have to write (ab) and (cd).

We clearly have three possible cases: all different, one equal, two equals. For later use it
is useful to represent them graphically. If we denote qab by a straight line then the case of all
different indexes is represented as

a b

c d
(B.2)

and the value of the average is θ4 since all spin indexes are different. Next there are four
possible ways of equating one (ab) index to one (cd) index. These are

a b

c d

a b

c d

a b

c d

a b

c d (B.3)

where the indexes connected by a dashed line are equal. In this case two indexes in the average
are equal, so only two spins survive and the spin average gives θ2.

Finally there are two possible ways of equating indexes (ab) and indexes (cd) with the
constraint a �= b and c �= d and reads

a b

c d

a b

c d
(B.4)

In this case we have two pairs of equal indexes in the average, so all spins disappear and the
average gives 1.

To evaluate (B.1) we have to sum each diagram over a, b, c, d; then it is easy to realize
that since the matrix qab is symmetric all four diagrams in (B.3) give the same contribution,
and so do the two diagrams in (B.4). These will be denoted as

(B.5)

respectively.
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Collecting all terms we have〈(∑
ab

qab σaσb

)2〉
= θ4

∑
(abcd)

qab qcd + 4 θ2
∑
(abc)

qac qcb + 2
∑
(ab)

q2
ab. (B.6)

The restricted sums can be transformed into unrestricted sums by inserting a factor (1 − δab)

for each pair of indexes (ab) to enforce the constraint and removing the constraint over the
indexes. By expanding now the resulting products of (1 − δ)’s, each restricted sum is finally
expressed as a combination of unrestricted sums. Diagrammatically we have

= −4 +2 (B.7)

and

= − (B.8)

Inserting these expressions into (B.6) after simple manipulations we end up with

ab

qab σaσb

2

= θ4 + 4 θ2(1 − θ2) + 2 (1 − θ2)2 (B.9)

The first term is disconnected and hence it does not contribute to the free energy; therefore, to
order O(q2

ab) the free energy reads

− nβf = −nβfSK − β2

4
[1 − β2(1 − θ2)2]

∑
ab

q2
ab +

β4

2
θ2(1 − θ2)

∑
abc

qacqcb + O
(
q3

ab

)
.

(B.10)
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